UG Programs | 4 years

B.Tech in Biological Systems Engineering

The Biological Systems Engineering program combines the power of biology, computing & engineering to tackle some of the greatest challenges for human & planetary health. Our population’s health is dominated by various diseases, & are exacerbated by major risk factors such as air pollution, malnutrition & vast regional differences in health care services. The vision for the BSE program is to transform health outcomes for the world, by leveraging the powerful convergence of data, digital health, biologics manufacturing & biology.

landing image
8 Semester Curriculum The curriculum at Plaksha is dynamic and continuously evolving, based on inputs from faculty, latest research and industry insights. B.Tech in Biological Systems Engineering syllabus outline is given below.
  • Semester 1
  • Semester 2
  • Semester 3
  • Semester 5
  • Semester 6
  • Semester 7
  • Semester 8
Introduction to AI

Instructor: Dr. Kanchi Gopinath


Fundamentals of Computational Thinking

This course is aimed to provide students with an understanding of the role that computational thinking plays in problem solving. They will be exposed to programming concepts and how to use them to design solutions using C language, starting from simple problems to interesting ones using ideas such as recursion and backtracking. In addition to learning key computing concepts and skills, the course will focus on laying necessary foundations in computational thinking going forward. For example, paradigms such as 'divide and conquer' and dynamic programming will be introduced through examples.


Instructors: Dr. Deepan M., Dr. Manoj Kannan


Design & Innovation

Instructor: Prof. Amit Sheth


Engineering Math in Action

Instructors: Dr. Amrik Sen, Dr. Vivek Deulkar


Nature's Machines

Instructors: Dr. Prashanth Kumar, Dr. Monika Sharma, Dr. Navjot Kaur


Entangled Worlds: Technology and the Anthropocene (Part - 1)

What do we mean when we say Entangled Worlds? Entanglement as such implies a state of intertwining, of interpenetration, deep connectivity, interlocking and irreducible, fundamental interdependency and interrelationship. Although it would seem obvious that we live in a profoundly interconnected world in which both processes initiated by humans and non-human biological and non-biological entities continuously impact one another, our actions as organic, conscious and sentient beings do not reflect the obvious fact of interconnectedness.

Human beings by and large continue to operate as though their actions are isolated events that do not impact the rest of the world including other human beings, plant and animal species. Environmental degradation, climate change, species extinction, economic inequality, various forms of injustice, war and so on perhaps point towards a fundamental flaw in the way we think and act. In fact, we could claim the way we think and act is no longer commensurate with the kinds of immense global challenges we are facing. This seems to be the critical question of the Anthropocene.

How does one begin to return to a fundamental understanding of the embeddedness of all forms of life as well as so-called inorganic material in a web of interdependence, of inexorable entanglement? Is it even possible for us to engender a radical shift in the way we think about ourselves and planet Earth? Or have we already gone too far in our quest for creating a solely human-centric world?

In this course we will explore and reflect on the question of entanglements from a variety of transdisciplinary perspectives including those of art, music, imagination, biological systems, quantum mechanics, language, mathematics, design, thought, time, space, history, philosophy and technology. In particular, we will be experimenting with the idea of contrapuntal music as a model from which to think about ways of interconnecting different, independent melodies (read: concepts) in a dynamic, lattice-like structure through which a new emergent harmony is created. 


Instructors: Dr. Aditya Malik, Dr. Brainerd Prince, Dr. Saikat Chakraborty


Innovation Lab & Grand Challenge Studio - 1

Instructor: Dr. Malini Balakrishnan


Programming & Data Structures

Instructors: Dr. Sandeep Manjanna, Dr. Manoj Kannan


Mathematics of Uncertainty

Instructor: Dr. Amrik Sen


Foundations of Physical World

Instructors: Dr. Rudra Pratap, Dr. Dhiraj Sinha


Nature's Machines Lab

Instructors: Dr. Prashanth Kumar, Dr. Navjot Kaur, Dr. Saikat Chakraborty


Fundamentals of Microeconomics



Communication Lab

Instructor: Dr. Brainerd Prince


The Art of Thinking & Reasoning



Innovation Lab and Grand Challenge Studio - 2

Instructors: Dr. Rucha Joshi, Dr. Amit Sheth, Dr. Vishal Garg


Universal Human Values



Electronics Systems Engineering

The objective of the course is to train the students in the field of basic and applied electronics, which forms the backbone of the modern semiconductor and telecommunication industry. The course covers the fundamental and applied aspects of the subject aligned toward the design and development of novel electronic devices and systems. The course starts with an introduction to the broader field of electronics engineering and its relevance for other industry verticals against the framework of significant inventions and innovations. It will cover the essential aspects of circuit theory and evolves towards encompassing the operation of semiconductor devices which form the backbone of computational and communication systems.

A special focus of the course is on how simple devices and circuits get interconnected to form complex units which play a defining role in the operation of sophisticated gadgets. Towards the completion of the course, the students would be able to conceive and prototype new artifacts, systems, and gadgets, while using the foundation of analog and digital electronics. 


Instructors: Dr. Sanjay Kumar Bose, Dr. Dhiraj Sinha


The Philosophy and Foundations of Computing and AI

This course explores philosophical and foundational issues concerning computers, computing, and artificial intelligence. It addresses a range of fundamental questions, including: What is a computer? Could a computer be conscious? How could you test whether a computer is thinking? Are thinking and consciousness the same or different? Is the human brain a computer? Are there limits to what is computable?

The course also describes the work of Alan Turing, and his revolutionary ideas and legacy. While a graduate student, Turing invented the fundamental logical principles of the modern computer. He is responsible for the model of computability that underlies modern computer science—the universal Turing machine. The course investigates this important model and the scope and limits of the universal machine. It also includes an introduction to the early years of the computer revolution, covering the secret origins of electronic computers during World War II and the earliest work on artificial intelligence.


Instructor: Dr. Jack Copeland


Universal Human Values - II

Instructor: Dr. Shalini Sharma


Intelligent Machines

This course provides a comprehensive introduction to robotics and cyber-physical systems. Through hands-on lab activities, assignments, projects, as well as through guest lectures spanning research and practice the students learn about topics such as- sensors & actuators, system modeling, kinematics, dynamics, and controls, perception, planning, and navigation, cyber-physical systems, communication, and hardware. These are all the ingredients for designing intelligent machines. At the end of this course the students will be able to gain the skills to design, build and evaluate simple robotic and cyber-physical systems that will give them the confidence to pursue more complex projects in their future endeavors. 


Instructors: Dr. Sandeep Manjanna, Dr. Shashank Tamaskar


Innovation Lab & Grand Challenge Studio - 03

Instructor: Dr. Rucha Joshi


Communication Lab - 3

Instructors: Dr. Brainerd Prince, Dr. Sumita Ambasta


Intro to Data Science



Computational Methods & Optimization



Entangled Worlds: Technology & the Anthropocene (Part - 2)

What do we mean when we say Entangled Worlds? Entanglement as such implies a state of intertwining, of interpenetration, deep connectivity, interlocking and irreducible, fundamental interdependency and interrelationship. Although it would seem obvious that we live in a profoundly interconnected world in which both processes initiated by humans and non-human biological and non-biological entities continuously impact one another, our actions as organic, conscious and sentient beings do not reflect the obvious fact of interconnectedness.

Human beings by and large continue to operate as though their actions are isolated events that do not impact the rest of the world including other human beings, plant and animal species. Environmental degradation, climate change, species extinction, economic inequality, various forms of injustice, war and so on perhaps point towards a fundamental flaw in the way we think and act. In fact, we could claim the way we think and act is no longer commensurate with the kinds of immense global challenges we are facing. This seems to be the critical question of the Anthropocene.

How does one begin to return to a fundamental understanding of the embeddedness of all forms of life as well as so-called inorganic material in a web of interdependence, of inexorable entanglement? Is it even possible for us to engender a radical shift in the way we think about ourselves and planet Earth? Or have we already gone too far in our quest for creating a solely human-centric world?

In this course we will explore and reflect on the question of entanglements from a variety of transdisciplinary perspectives including those of art, music, imagination, biological systems, quantum mechanics, language, mathematics, design, thought, time, space, history, philosophy and technology. In particular, we will be experimenting with the idea of contrapuntal music as a model from which to think about ways of interconnecting different, independent melodies (read: concepts) in a dynamic, lattice-like structure through which a new emergent harmony is created. 


Instructors: Dr. Aditya Malik, Dr. Brainerd Prince, Dr. Saikat Chakraborty


Stochastic Modeling in Biology

Instructor(s) - Dr. Monika Sharma


Cell Biology

Instructor(s) - Dr. Swagata Halder



Modeling Cellular transport & Reaction (E)

Instructor(s) - Dr. Saikat Chakraborty


Machine Learning and Pattern Recognition

Instructor(s) - Dr. Siddharth S


Innovation Lab & Grand Challenge Studio - 05

Instructor(s) - Dr. Srikant Srinivasan


Innovation Lab & Grand Challenge Studio VI

Continuing their project progress from semester 4, the goal for Semester 5 and 6 will be to implement solutions via projects at the State level, with an eye for expansion at the National level. To achieve this, students will seek validation of concept from various stakeholders, complete the engineering design cycle of their project, while also developing an entrepreneurial spirit from their experiences. Mentored Leadership and Professional Development opportunities will be a constant feature across the 4 year ILGC experience, and will be integrated with project work. These serve to develop the student’s professional skills and also help in creating a more integrated socio-integrated understanding of engineering/design.


Engineering One Planet

Human activities over a period has profoundly altered the balance of planetary health which in turn is directly linked to human health. In recent times there is a global recognition that a balance is needed among global systems of land, air, water and biodiversity to sustain and preserve life. This has been the genesis of studying the interdependencies of human and planetary health. This course will introduce the concept of planetary health, what are the current impacts due to human activities and the solutions to mitigate the risks at local and global levels. The solutions that will help populations with sustainable ways of living will be discussed and exemplified.


Biomedical Imaging & Analysis

Advances in medical technologies for visualization are supported by the growing field of biomedical imaging technologies and analysis. This course will introduce the imaging methods in biomedicine and clinical diagnostics such as microscopy, ultrasound, MRI, CT, and their application to enable better decision support. The course will cover topics on digital signal processing, data acquisition, enhancements and visualization. Early diagnosis and targeted therapeutic interventions are key in medical treatment of patients. How Computer-aided diagnosis (CADx) using AI and ML algorithms is leading to improved detection diagnosis and decision support will be covered in this course. Imaging informatics and integration of image data with genomics/biomarkers and clinical data are becoming increasingly important to improve efficiency of drug development and therapy regimen. This will be discussed to understand the field and relevance. Case studies will be used to explain the impact of advanced tools for analysis of biomedical imaging data in biomedicine.


Network & Systems Biology

Biological systems and processes are inherently complex and require an integrative approach at molecular level to decipher what keeps us healthy or causes disease. This course is designed to understand this complex network of interactions through an integrative “omics” approach (transcriptomics, proteomics, metabolomics, lipidomics) and effects on a global scale involving numerous different biological molecules in the same time scale. The course includes topics on high-throughput data acquisition, statistical analysis, normalization, differential expression, clustering, enrichment analysis and network construction. The course will introduce the concept of ‘virtual patient’ model and its application in discovery and development of precision and personalized medicine. Case studies on specific diseases e.g., oncology will be discussed.


Free Elective I

Students may take courses from other majors as part of the free elective. Additionally, faculty may also offer some introductory electives as part of this sequence.


Application Domain Track III

The Application Domain Tracks are a series of 1 credit modules that help students inculcate skills and mindsets related to research and entrepreneurship. Through these tracks, students will contribute to ongoing research projects in Plaksha's flagship grand challenge research centers, and may work with faculty on their research or on approved external projects in industry/government or startups. Across semesters, students will have the option to work across different disciplinary areas or focus on one area but the purpose is for them to appreciate the relevance of their coursework to a variety of challenges and areas.


Physiological Systems & Digital Twins

This course will focus on bioengineering tools used and needed to model physiological systems and how the models and simulations help understand the system design, plasticity, diseases and preventive and therapeutic interventions. The efforts in development of digital twin models of human organs and how AI can be used to model physiological systems e.g., patient heart will be discussed. The impact on drug discovery, development and personalized medicine will be covered and discussed in the context of current solutions and unmet needs.


Technical Elective I

Sample Electives include: Microbiome in Human & Planetary Health, Gene Editing and Personalized Theranostics, Diagnostic Technologies, Multi-Modal Sensors, Biomanufacturing, Protein and Antibody Engineering, Engineering Biology, Epidemiology and Public Health


Technical Elective II

Sample Electives include: Microbiome in Human & Planetary Health, Gene Editing and Personalized Theranostics, Diagnostic Technologies, Multi-Modal Sensors, Biomanufacturing, Protein and Antibody Engineering, Engineering Biology, Epidemiology and Public Health


Humanities & Social Science Elective I

Sample electives include: AI for Social Good, Technology, Policy and Law, Decision Making Under Uncertainty, Fairness, Transparency, Accountability, and Ethics in Data Science


Innovation Lab & Grand Challenge Studio Capstone

ILGC transforms and culminates as a two semester capstone design project. By the end of the seventh semester a detailed design of the final product (this could be a device, system, process, software, etc. that results from this design experience) needs to be completed. This includes but not limited to the following: Description of the overall project, including a description of the customer and their requirements, the purpose, specifications, and a summary of the approach. Description of the different design approaches considered and evaluation of each design approach. Detailed description of the final proposed design.


Technical Elective III

Sample Electives include: Microbiome in Human & Planetary Health, Gene Editing and Personalized Theranostics, Diagnostic Technologies, Multi-Modal Sensors, Biomanufacturing, Protein and Antibody Engineering, Engineering Biology, Epidemiology and Public Health


Technical Elective IV

Sample Electives include: Microbiome in Human & Planetary Health, Gene Editing and Personalized Theranostics, Diagnostic Technologies, Multi-Modal Sensors, Biomanufacturing, Protein and Antibody Engineering, Engineering Biology, Epidemiology and Public Health


Technical Elective V

Sample Electives include: Microbiome in Human & Planetary Health, Gene Editing and Personalized Theranostics, Diagnostic Technologies, Multi-Modal Sensors, Biomanufacturing, Protein and Antibody Engineering, Engineering Biology, Epidemiology and Public Health


Humanities & Social Science Elective II

Sample electives include: AI for Social Good, Technology, Policy and Law, Decision Making Under Uncertainty, Fairness, Transparency, Accountability, and Ethics in Data Science


Innovation Lab & Grand Challenge Studio Capstone

ILGC transforms and culminates as a two semester capstone design project. By the end of the eighth semester, students will have a working product (this could be a device, system, process, software, etc. that results from this design experience). Therefore, the focus of this semester is to implement, test and evaluate the design approach chosen in your first semester. The following are the expected requirements and deliverables for this semester: Working final product Testing and evaluation of product design Demo of the final product Completed Project Description, Final Reflection and Completed Outcomes Matrix


Learning Experiences

Experiential Learning

Integrated learning experience across 4 years. You will work on authentic, real world projects through industry and community engagement or by research with faculty.
image
By having access to state-of-the-art makerspaces and coding cafes and incorporating them in the curriculum, students will become more context-aware, develop critical thinking abilities, and learn by creating. This will help foster a tinkering and problem solving mindset, immersing students in experiential learning from day one. These areas will be open to students to explore, create, prototype and design, while also housing equipment and technologies like 3D printers, sensors, etc.
image
The core curriculum will not just be limited to engineering and sciences, but bring in exposure to entrepreneurship and design which will enable humane and empathetic outcomes through technology. Each student will undertake multiple different experiences to develop skills like finding opportunities, creating value, and embracing risks. Students will be mentored and supported by Plaksha founders and professionals from industry.
image
At Plaksha, learning and skill development do not stop in the classroom. Students will have the opportunity to create and immerse themselves in pursuing their academic and creative interests. Student led clubs will be autonomous bodies that operate under the purview of the Office of Student Life. Being the founding batch, students will be encouraged to help establish a vibrant culture through clubs and societies on campus.

Hear about the course from the experts

Watch Ursheet Parikh, Co-lead of the Engineering Biology Investment Practice at Mayfield Ventures talk about this major. He has been closely involved in the design of this degree
Find the answers to your questions in some of our frequently asked questions by students
calendar-icon

Dates to Remember

Dec 5, 2023

Round 1 Deadline

Jan 17, 2024

Round 2 Deadline

March 20, 2024

Round 3 Deadline

April 30, 2024

Round 4 Deadline

June 17, 2024

Round 5 Deadline

*Round deadlines are subject to change.

Other Programs

Up Next

UG Admissions